25 research outputs found

    Comprendre l’adaptation de Lactococcus lactis par une\ud approche de biologie intĂ©grative Ă  l’échelle du gĂ©nome

    Get PDF
    L’adaptation de Lactococcus lactis Ă  diffĂ©rentes conditions de culture a Ă©tĂ© apprĂ©hendĂ©e grĂące Ă  une\ud dĂ©marche de biologie intĂ©grative. Cette approche intĂšgre les donnĂ©es issues de diffĂ©rents niveaux de\ud rĂ©gulation et combine diverses techniques de mesure Ă  l’échelle globale (transcriptome, protĂ©ome,\ud stabilitĂ© des ARN messagers) et locale (suivi des paramĂštres de culture). Plusieurs outils\ud mathĂ©matiques de modĂ©lisation (tels que la modĂ©lisation numĂ©rique et la modĂ©lisation statistique)\ud ont Ă©tĂ©s dĂ©veloppĂ©s pour intĂ©grer l’ensemble de ces donnĂ©es hĂ©tĂ©rogĂšnes.\ud Une culture continue de L. lactis Ă  diffĂ©rents taux de dilution a permis d’étudier l’influence du taux\ud de croissance sur la physiologie de la bactĂ©rie, un paramĂštre qui n’est jamais distinguĂ© de la rĂ©ponse\ud au stress lors des Ă©tudes dynamiques de l’adaptation. La rĂ©ponse Ă  la variation du taux de croissance\ud implique majoritairement les fonctions associĂ©es Ă  la biogenĂšse mais demeure extrĂȘmement Ă©tendue\ud puisqu’elle affecte l’expression de 30 % des gĂšnes de L. lactis. Cette rĂ©ponse concerne les niveaux\ud d’ARN messagers et de protĂ©ines mais aussi les processus cellulaires majeurs que sont la\ud traduction, la dilution et la dĂ©gradation. Il a Ă©tĂ© montrĂ©, par une approche de modĂ©lisation, que les\ud efficacitĂ©s de traduction et les vitesses de dĂ©gradation des protĂ©ines Ă©taient en effet inversement\ud proportionnelles au taux de croissance. Au final, l’influence des diffĂ©rents processus cellulaires a pu\ud ĂȘtre quantifiĂ©e par des calculs de coefficients de contrĂŽle.\ud L’imposition progressive d’une carence en isoleucine lors d’une culture discontinue en batch a\ud permis de caractĂ©riser la rĂ©ponse, encore peu Ă©tudiĂ©e, de L. lactis Ă  une carence en acide aminĂ©.\ud L’adaptation Ă  ce stress nutritionnel entraĂźne une vaste rĂ©organisation de la physiologie cellulaire\ud qui se divise en trois types de rĂ©ponses : une rĂ©pression globale des principales fonctions\ud biologiques associĂ©es Ă  la croissance, une rĂ©ponse propre au stress imposĂ© visant Ă  lutter\ud spĂ©cifiquement contre la carence en isoleucine, ainsi qu’une activation inexpliquĂ©e de mĂ©canismes\ud en lien avec le stress oxydatif. L’implication de diffĂ©rents mĂ©canismes (rĂ©ponse stringente,\ud mĂ©canisme liĂ© au taux de croissance, rĂ©gulations par CodY, GlnR et CcpA) dans la rĂ©gulation de\ud cette rĂ©ponse a Ă©tĂ© Ă©valuĂ©e par transcriptomique comparative.\ud Les dĂ©terminants majeurs des concentrations en protĂ©ines au sein de la cellule ont Ă©tĂ© recherchĂ©s\ud mathĂ©matiquement grĂące Ă  un algorithme de sĂ©lection de modĂšles de covariances. Le biais de\ud codons (CAI) s’est avĂ©rĂ© ĂȘtre un paramĂštre majeur, plus important que les concentrations en ARN\ud messagers, suggĂ©rant l’existence d’un contrĂŽle gĂ©nĂ©tique prĂ©pondĂ©rant sur l’adaptation\ud transcriptionnelle. Enfin, il a pu ĂȘtre dĂ©montrĂ© que le degrĂ© d’implication des diffĂ©rents\ud dĂ©terminants varie en fonction du mode d’adaptation.\ud L’approche de biologie intĂ©grative suivie au cours de cette thĂšse a permis une meilleure\ud comprĂ©hension des mĂ©canismes d’adaptation de L. lactis et est aujourd’hui entiĂšrement\ud gĂ©nĂ©ralisable Ă  d’autres processus comme Ă  d’autres microorganismes. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------- A systems biology approach was implemented to study Lactococcus lactis adaptation to\ud various growing conditions. This method combines growth parameter monitoring and\ud genome-wide measurement technologies (transcriptome, proteome, messenger RNA\ud stability). Data from these diverse regulation levels were integrated thanks to mathematical\ud tools developed on purpose.\ud Growth rate influence on L. lactis physiology, which is never dissociated from stress\ud responses when studying dynamic adaptation processes, was analysed through continuous\ud culture at various growth rates. This widespread response mainly involves biogenesis-related\ud functions and affects the expression of 30 % of L. lactis genes. Both messenger RNA and\ud protein levels are modified but cellular processes such as translation, dilution and degradation\ud are also concerned. As a matter of fact, translation efficiency and protein degradation rates\ud were proved to be inversely proportional to growth rate by a modelling approach. Control\ud coefficient calculations enabled the quantification of cellular processes influences.\ud The dynamic response of L. lactis to isoleucine starvation was studied by the progressive\ud consumption of this amino-acid in a discontinuous batch fermentation. This poorly\ud characterized adaptation process triggers a wide reorganization of cellular physiology that\ud could be divided in three parts: a global repression of the main biological functions related to\ud growth, a response more specific to the encountered stress to struggle against isoleucine\ud starvation and an unexplained activation of oxidative stress-related cellular functions.\ud Comparative transcriptomics allowed the implication of various mechanisms to be quantified\ud in the regulation of this adaptation response (stringent response, growth rate adaptation\ud mechanism, CodY, GlnR and CcpA regulation).\ud The major biological determinants of protein intracellular concentration were mathematically\ud investigated thanks to a covariance model selection algorithm. Codons bias (CAI) was found\ud to be the most influent parameter, even more than mRNA concentrations, which suggests that\ud genetic control is stronger than transcriptional adaptation. The weight of the different\ud determinants was also found to depend on adaptation modes.\ud The systems biology approach applied in this work enabled a better understanding of L. lactis\ud adaptation mechanisms and will be entirely transposable to other cellular processes as well as\ud other microorganism

    Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information

    Get PDF
    Background: Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the Lmodel Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results: The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion: This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms

    The price of informality : how informal finance schemes defaulted in China, 1989–2015.

    Get PDF
    The default of a large number of informal finance schemes in China has caused enormous financial losses, and therefore has potential social and political significance. Analysing 354 defaulted schemes from 1989 to 2015, this study defines how they differ from other types of informal finance. It also produces an ideal-type representation of the default process and concludes that the default results from greed, increasing financial pressure at the individual level and private enterprises’ restricted access to state bank loans at the institutional level. China’s financial system should be more flexible in order to prevent further financial losses through informal financial relations

    Transcriptome and Proteome Exploration to Model Translation Efficiency and Protein Stability in Lactococcus lactis

    Get PDF
    This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms

    Comprendre l adaptation de Lactococcus lactis par une approche de biologie intégrative à l échelle du génome

    No full text
    L adaptation de Lactococcus lactis Ă  diffĂ©rentes conditions de culture a Ă©tĂ© apprĂ©hendĂ©e grĂące Ă  une dĂ©marche de biologie intĂ©grative. Cette approche intĂšgre les donnĂ©es issues de diffĂ©rents niveaux de rĂ©gulation et combine diverses techniques de mesure Ă  l Ă©chelle globale (transcriptome, protĂ©ome, stabilitĂ© des ARN messagers) et locale (suivi des paramĂštres de culture). Plusieurs outils mathĂ©matiques de modĂ©lisation (tels que la modĂ©lisation numĂ©rique et la modĂ©lisation statistique) ont Ă©tĂ©s dĂ©veloppĂ©s pour intĂ©grer l ensemble de ces donnĂ©es hĂ©tĂ©rogĂšnes. Une culture continue de L. lactis Ă  diffĂ©rents taux de dilution a permis d Ă©tudier l influence du taux de croissance sur la physiologie de la bactĂ©rie, un paramĂštre qui n est jamais distinguĂ© de la rĂ©ponse au stress lors des Ă©tudes dynamiques de l adaptation. La rĂ©ponse Ă  la variation du taux de croissance implique majoritairement les fonctions associĂ©es Ă  la biogenĂšse mais demeure extrĂȘmement Ă©tendue puisqu elle affecte l expression de 30 % des gĂšnes de L. lactis. Cette rĂ©ponse concerne les niveaux d ARN messagers et de protĂ©ines mais aussi les processus cellulaires majeurs que sont la traduction, la dilution et la dĂ©gradation. Il a Ă©tĂ© montrĂ©, par une approche de modĂ©lisation, que les efficacitĂ©s de traduction et les vitesses de dĂ©gradation des protĂ©ines Ă©taient en effet inversement proportionnelles au taux de croissance. Au final, l influence des diffĂ©rents processus cellulaires a pu ĂȘtre quantifiĂ©e par des calculs de coefficients de contrĂŽle. L imposition progressive d une carence en isoleucine lors d une culture discontinue en batch a permis de caractĂ©riser la rĂ©ponse, encore peu Ă©tudiĂ©e, de L. lactis Ă  une carence en acide aminĂ©. L adaptation Ă  ce stress nutritionnel entraĂźne une vaste rĂ©organisation de la physiologie cellulaire qui se divise en trois types de rĂ©ponses : une rĂ©pression globale des principales fonctions biologiques associĂ©es Ă  la croissance, une rĂ©ponse propre au stress imposĂ© visant Ă  lutter spĂ©cifiquement contre la carence en isoleucine, ainsi qu une activation inexpliquĂ©e de mĂ©canismes en lien avec le stress oxydatif. L implication de diffĂ©rents mĂ©canismes (rĂ©ponse stringente, mĂ©canisme liĂ© au taux de croissance, rĂ©gulations par CodY, GlnR et CcpA) dans la rĂ©gulation de cette rĂ©ponse a Ă©tĂ© Ă©valuĂ©e par transcriptomique comparative. Les dĂ©terminants majeurs des concentrations en protĂ©ines au sein de la cellule ont Ă©tĂ© recherchĂ©s mathĂ©matiquement grĂące Ă  un algorithme de sĂ©lection de modĂšles de covariances. Le biais de codons (CAI) s est avĂ©rĂ© ĂȘtre un paramĂštre majeur, plus important que les concentrations en ARN messagers, suggĂ©rant l existence d un contrĂŽle gĂ©nĂ©tique prĂ©pondĂ©rant sur l adaptation transcriptionnelle. Enfin, il a pu ĂȘtre dĂ©montrĂ© que le degrĂ© d implication des diffĂ©rents dĂ©terminants varie en fonction du mode d adaptation. L approche de biologie intĂ©grative suivie au cours de cette thĂšse a permis une meilleure comprĂ©hension des mĂ©canismes d adaptation de L. lactis et est aujourd hui entiĂšrement gĂ©nĂ©ralisable Ă  d autres processus comme Ă  d autres microorganismesA systems biology approach was implemented to study Lactococcus lactis adaptation to various growing conditions. This method combines growth parameter monitoring and genome-wide measurement technologies (transcriptome, proteome, messenger RNA stability). Data from these diverse regulation levels were integrated thanks to mathematical tools developed on purpose. Growth rate influence on L. lactis physiology, which is never dissociated from stress responses when studying dynamic adaptation processes, was analysed through continuous culture at various growth rates. This widespread response mainly involves biogenesis-related functions and affects the expression of 30 % of L. lactis genes. Both messenger RNA and protein levels are modified but cellular processes such as translation, dilution and degradation are also concerned. As a matter of fact, translation efficiency and protein degradation rates were proved to be inversely proportional to growth rate by a modelling approach. Control coefficient calculations enabled the quantification of cellular processes influences. The dynamic response of L. lactis to isoleucine starvation was studied by the progressive consumption of this amino-acid in a discontinuous batch fermentation. This poorly characterized adaptation process triggers a wide reorganization of cellular physiology that could be divided in three parts: a global repression of the main biological functions related to growth, a response more specific to the encountered stress to struggle against isoleucine starvation and an unexplained activation of oxidative stress-related cellular functions. Comparative transcriptomics allowed the implication of various mechanisms to be quantified in the regulation of this adaptation response (stringent response, growth rate adaptation mechanism, CodY, GlnR and CcpA regulation). The major biological determinants of protein intracellular concentration were mathematically investigated thanks to a covariance model selection algorithm. Codons bias (CAI) was found to be the most influent parameter, even more than mRNA concentrations, which suggests that genetic control is stronger than transcriptional adaptation. The weight of the different determinants was also found to depend on adaptation modes. The systems biology approach applied in this work enabled a better understanding of L. lactis adaptation mechanisms and will be entirely transposable to other cellular processes as well as other microorganismsTOULOUSE-INSA (315552106) / SudocSudocFranceF

    PNPase is involved in the coordination of mRNA degradation and expression in stationary phase cells of Escherichia coli

    No full text
    Background: Exoribonucleases are crucial for RNA degradation in Escherichia coli but the roles of RNase R and PNPase and their potential overlap in stationary phase are not well characterized. Here, we used a genome-wide approach to determine how RNase R and PNPase affect the mRNA half-lives in the stationary phase. The genome-wide mRNA half-lives were determined by a dynamic analysis of transcriptomes after transcription arrest. We have combined the analysis of mRNA half-lives with the steady-state concentrations (transcriptome) to provide an integrated overview of the in vivo activity of these exoribonucleases at the genome-scale. Results: The values of mRNA half-lives demonstrated that the mRNAs are very stable in the stationary phase and that the deletion of RNase R or PNPase caused only a limited mRNA stabilization. Intriguingly the absence of PNPase provoked also the destabilization of many mRNAs. These changes in mRNA half-lives in the PNPase deletion strain were associated with a massive reorganization of mRNA levels and also variation in several ncRNA concentrations. Finally, the in vivo activity of the degradation machinery was found frequently saturated by mRNAs in the PNPase mutant unlike in the RNase R mutant, suggesting that the degradation activity is limited by the deletion of PNPase but not by the deletion of RNase R. Conclusions: This work had identified PNPase as a central player associated with mRNA degradation in stationary phase
    corecore